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LETTER TO THE EDITOR 

Internal transition in an infinitely long polymer chain 

R Finsy, M Janssens and A Bellemans 
Faculte des Sciences, Universite Libre de Bruxelles, 1050 Bruxelles, Belgium 

Received 26 August 1975 

Abstract. The existence of an internal transition (collapse) in a long polymer chain is investi- 
gated as follows: a chain of n segments is simulated by a self-avoiding walk of n -  1 steps on 
a simple cubic lattice, an energy - 6 being associated with each pair of neighbouring segments, 
and the distribution of the zeros ofthe partition function in the complex plane associated with 
the variable x = exp(c/kT) is studied for increasing n values. A tentative conclusion is that 
a line of roots cuts the real positive axis in x, 2 1.74 (kT , j r  2 1.82) in the limit n + r x ~ ,  

supporting the occurrence of a transition in this model. 

The aim of this letter is to provide some further evidence for the occurrence of an internal 
transition in an infinitely long polymer chain as suggested by several recent works 
(Mazur and McCrackin 1968, McCrackin et al 1973, Domb 1974, Rapaport 1974, 
Massih and Moore 1975). Such a transition would correspond to a sudden collapse of 
the chain at a particular temperature T,. The model considered here is very simple : the 
chain is simulated by a self-avoiding walk on a infinite lattice, each segment of the chain 
occupies one site exactly, no overlaps are allowed and each pair of non-consecutive 
segments occupying neighbouring sites contributes to the energy of the system by - E .  

The partition function of a finite chain of n segments (n-mer or self-avoiding walk of 
n - 1 steps) is a polynomial of degree v, in the variable x = exp(c/kT) 

where C,(Y) is the number of walks with internal contacts and \I,, is the maximum value 
of v ;  for a regular lattice of coordination number q, one obviously has \in < qn/2. 

The free energy of the chain per segment, given by 

f ,(x)/kT= -n- ' lnZ,(x) ( 2 )  

with x real and positive, may be conveniently rewritten in terms of the 
the equation Z,(z) = 0;  one has indeed 

roots ( z j )  of 

V" 

Z,(x) = c,(O)H 1 -- 
1 i :I 

and 
'n 

f , ( x ) / k T  = -n-' lnc,(O)-n-' Cln[l-(x/zj)]. 
1 

(3) 

(4) 
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As all coefficients c,,(v) are real and non-negative, none of the roots z j  lies on the real 
positive axis of the complex z plane. As this is precisely the domain of variation of the 
physical variable x, f,(x) is analytic and no transition can occur, at least as long as n 
remains finite. 

However, as the limit n --+ cc is approached, a current situation is the formation of 
lines of roots in the z plane. If such a line of zeros crosses the positive real axis in some 
point x,, then it is well known, since the fundamental work of Yang and Lee (1952), that 
the limiting function f , ( x )  is still analytic in both domains 0 < x < x, and x > x,, but 
that it presents some kind of singular behaviour in its derivatives at x = .U, (transition 
point). Hence the very existence of a transition (as well as its location) can be inferred 
from the change with n of the root distribution within the z plane. 

Here we shall limit ourselves to five-choice walks on the (three-dimensional) simple 
cubic lattice. The coefficients c,,(v) were previously determined : (i) by exact counting for 
n B 13 ;and (ii) by a Monte Carlo sampling technique for n B 40 (Janssens and Bellemans 
1975; up to n = 31 the sampling was based on 3 x1O5 walks, but for higher n up to 40 
only 2 x lo3 walks were considered). 

The roots corresponding to the exact data n < 13 are shown on figure 1 and there 
appears a rather neat tendency for them to build a regular contour around the origin 
which might well close on some point of the real positive axis as n + sc. The exploration 
of values of n larger than 13 requires some caution. As the corresponding c,,(v) were 
estimated by means of a Monte Carlo sampling, they only lead to an approximate 
picture of the distribution of roots. The situation gets even worse for n > 24: indeed 

, x  
I 2 

z plane 134 

Figure 1. Distribution of the roots of Z,(x) for n d 13 (exact results). Note that some roots, 
lying too far away from the origin, have been omitted. 
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some c,(v) with 1' rather large are erroneously samp!ed as zero by the Monte Carlo 
program, because the corresponding configurations are relatively very improbable ; 
hence even the total number of roots obtained is not quite correct in this case. We 
therefore limited our analysis to n < 31, considering the information available for 
larger n as not sufficiently accurate for the present purpose. (As a check we verified that 
for n = 13 the roots respectively obtained from the exact coefficients c13(v) and from 
their sampled values, were in excellent coincidence.) 

The roots corresponding to Z,, and Z, ,  are plotted on figure 2 from which it 
appears that the tendency of the roots to build a contour around the origin is confirmed. 
On figure 3 we show the closest root to the positive x axis for all cases n = 11 to 31 : 

'I z plane 

i 
Figure 2. Distribution of the roots of Z , ,  and Z , ,  
(Monte Carlo data). Note that two roots correspond- 
ing to n = 23 and one root corresponding to n = 31 
have been omitted on account of their large distance 
from the origin. Full circles correspond to n = 23 
and open circles to n = 31. 

there is good evidence that, as the limit n + 

Figure 3. Closest root to the positive real axis for 
11 C n C 31. The full line corresponds to the least- 
squares fit of equation (5 ) .  

xj is approached, a line of roots will cut this 
axis orthogonally near x = 1.7. (Obviously values of x larger than one correspond 
to c > 0, ie the average force between neighbouring segments is attractive.) Assuming 
that the roots plotted on figure 3 roughly follow the parabolic curve 

x = x,-uy2 ( 5 )  

X, = 1.736+0.012 (6) 

kTJc  = 1.81 k0.02. (7) 

( z  = x+iy), a least-squares fit of the roots corresponding to 17 6 n < 31 yields 

ie 
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Although the quoted uncertainties may be somewhat too optimistic, the transition 
temperature T, is undoubtedly much lower than the 0 temperature corresponding to 
the vanishing of the second virial coefficient of two interacting chains which was recently 
determined for this same model : k @ / c  = 3.71 +0.01 (Janssens and Bellemans 1975). 

In principle the order of the transition follows from the (normalized) density of 
roots in x, (Grossmann and Rosenhauer 1967) but no serious discussion of this matter 
can be carried out on the basis of the information available here. Figure 2 nevertheless 
suggests that the roots tend to be more or less uniformly distributed along the contour. 
Should this tendency be maintained in the limit n + CO, the density of roots in x, would 
be finite and the transition would be a first-order one. 

The extension of this work to other lattices is progressing. One of use (MJ) gratefully 
acknowledges the support of the Belgian IRSIA Institute. 
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